Occurrence and antimicrobial susceptibility of Enterobacteriaceae from public transport in Dar es Salaam, Tanzania.
DOI:
https://doi.org/10.47419/bjbabs.v5i01.265Keywords:
Antimicrobial resistance, Enterobacteriaceae, multi-drug resistanceAbstract
Background and objective: This study aims to investigate the occurrence and antimicrobial susceptibility of clinically relevant Enterobacteriaceae from public transport in Dar es Salaam, Tanzania.
Methods: A total of 100 pooled swab samples were collected from public buses in Dar es Salaam from January 2023 to April 2023. Enterobacteriaceae (Escherichia coli, Enterobacter spp., and Klebsiella spp.) were isolated and identified using standard microbiological techniques. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. PCR amplification was carried out to detect the presence of antibiotic resistance genes. Furthermore, the 16S rRNA gene of isolates that exhibited phenotypic resistance to all tested antibiotics was Sanger sequenced and a phylogenetic tree was constructed.
Results: A high abundance of clinically important Enterobacteriaceae was revealed with high variability in the number of Escherichia coli (48), Enterobacter spp. (15), and Klebsiella spp. (68). Similarly, a high AMR profile was observed against ampicillin (100%) followed by Amoxicillin (97%). Also, isolates resistant to multiple drugs (MDR) were common and very prevalent, where out of 131 isolates, 129 (98%) were MDR. Furthermore, the findings showed a strong positive correlation between phenotypic resistance and the presence of resistance genes (rs = 0.66, P<0.05). Furthermore, the molecular identification confirmed the PDR isolates were distributed across three genera: Escherichia, Enterobacter, and Klebsiella. Also, the phylogenetic analysis indicated the PDR isolates interspersed with reference sequences within their respective genera
Conclusions: The present findings highlighted the high abundance and prevalence of AMR clinically important Enterobacteriaceae and underscore the importance of instituting surveillance programs designed to combat AMR focusing on public transport in developing countries.
Metrics
Downloads
References
Health situation in Gaza and the wider region; 2023. Available from: https://www. who.int/.
Dall C. Antimicrobial resistance far deadlier than thought, study finds. CIDRAP. 2022;Available from: https://www.cidrap.umn.edu/antimicrobial-stewardship/ antimicrobial-resistance-far-deadlier-thought-study-finds.
Horumpende PG, Mshana SE, Mouw EF, Mmbaga BT, Chilongola JO, De Mast Q. Point prevalence survey of antimicrobial use in three hospitals in North-Eastern Tan- zania. Antimicrob Resist Infect Control. 2020;9(1):149–149. 10.1186/s13756-020- 00809-3.
Sindato C, Mboera L, Katale BZ, Frumence G, Kimera S, Clark TG, et al. Knowl- edge, attitudes and practices regarding antimicrobial use and resistance among com- munities of Ilala, Kilosa and Kibaha districts of Tanzania. Antimicrob Resist Infect Control. 2020;9(194):1–17. 10.1186/s13756-020-00862-y.
Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infect Drug Resist. 2019;12:3903–3913. 31908502. 10.2147/IDR.S234610.
Christaki E, Marcou M, Tofarides A. Antimicrobial Resistance in Bacteria: Mech- anisms, Evolution, and Persistence. J Mol Evol. 2020;88(1):26–40. 31659373. 10.1007/s00239-019-09914-3.
Holmes AH, Moore L, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387:176–87. 10.1016/S0140-6736(15)00473-0.
Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482–501. 31294229. 10.3934/microbiol.2018.3.482.
Tan ASB, Erdogdu G. Microbiological burden of public transport vehicles. Istanbul J Pharm. 2017;47(2):52–56. 10.5152/IstanbulJPharm.2017.008.
Lutz JK, Van Balen J, Mac CJ, Wilkins JR, Lee J, Nava-Hoet RC. Methicillin-resistant Staphylococcus aureus in public transportation vehicles (buses): Another piece to the epidemiologic puzzle. Am J Infect Control. 2014;42(12):1285–90. 25465258. 10.1016/j.ajic.2014.08.016.
Cao T, Liu Y, Li Y, Wang Y, Shen Z, Shao B, et al. A public health concern: Emergence of carbapenem-resistant Klebsiella pneumoniae in a public transportation environ- ment. J Antimicrob Chemother. 2020;75(10):2769–2772. 32620964. 10.1093/jac/d- kaa260.
Kahsay AG, Asgedom SW, Weldetinsaa HL. Enteric bacteria, methicillin resistant S. aureus and antimicrobial susceptibility patterns from buses surfaces in Mekelle city. BMC Res Notes. 2019;12(1):1–5. 31196155. 10.1186/s13104-019-4366-1.
Geletu US, Usmael MA, Ibrahim AM. Isolation, Identification, and Suscep- tibility Profile of E. coli, Salmonella, and S. aureus in Dairy Farm and Their Public Health Implication in Central Ethiopia. Vet Med Int. 2022;35198138. 10.1155/2022/1887977.
Khawaskar DP, Sinha DK, Lalrinzuala MV, Athira V, Kumar M, Chhakchhuak L. Pathotyping and antimicrobial susceptibility testing of Escherichia coli isolates from neonatal calves. Vet Res Commun. 2022;46(2):353–362. 10.1007/s11259-021-09857- 5.
Weinstein MP, Patel JB, Bobenchik AM, Campeau S, Cullen SK, Galas MF, et al.; 2020.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resis- tance. Clin Microbiol Infect. 2012;18(3):268–81. 21793988. 10.1111/j.1469- 0691.2011.03570.x.
Kumar MS, Kaur G, Sandhu AK. Genomic DNA Isolation from Fungi, Algae, Plant, Bacteria and Human Blood using CTAB. Int J Sci Res. 2014;3(9):617–618.
Alfadil NAA, Mohamed MS, Ali M, Nima MME. Characterization of pathogenic bac- teria isolated from Sudanese banknotes and determination of their resistance profile. Int J Microbiol. 2018;30344610. 10.1155/2018/4375164.
Momtaz H, Rahimi E, Moshkelani S. Molecular detection of antimicrobial resistance genes in E. coli isolated from slaughtered commercial chickens in Iran. Molecular detection of antimicrobial resistance genes in E coli isolated from slaughtered com- mercial chickens in Iran;57(4):193–197. Available from: https://doi.org/10.17221/ 5916-VETMED. 10.17221/5916-VETMED.
Swedan S, Alrub HA. Antimicrobial Resistance, Virulence Factors, and Pathotypes of Escherichia coli Isolated from Drinking Water Sources in Jordan. Pathogens. 2019;8(2):1–19. Available from: https://doi.org/10.3390/pathogens8020086. 10.3390/pathogens8020086.
Eguale T, Birungi J, Asrat D, Njahira MN, Njuguna J, Gebreyes WA, et al. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrob Resist Infect Control. 2017;6(3). 10.1186/s13756-017-0171-6.
Abdelaziz NA. Phenotype-genotype correlations among carbapenem-resistant Enterobacterales recovered from four Egyptian hospitals with the report of SPM car- bapenemase. Antimicrob Resist Infect Control. 2022;11(13):1–10. 10.1186/s13756- 022-01061-7.
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Anal- ysis Version 11. Mol Biol Evol. 2021;38(7):3022–3029. 33892491. 10.1093/mol- bev/msab120.
Boyd DA, Mataseje LF, Davidson R, Delport JA, Fuller J, Hoang L, et al. Enterobac- ter cloacae complex isolates Harboring blaNMC-A or blaIMI-type class a carbapen- emase genes on novel chromosomal integrative elements and plasmids. Antimicrob Agents Chemother. 2017;61(5):2578–16. 28223374. 10.1128/AAC.02578-16.
Oluyege AO, Ojo KO. Chromosome Mediated Fluoroquinolone and Extended Spectrum Beta-lactamase Resistant Genes in E. coli of Poultry Origin in Ekiti State. Microbiology Research Journal International. 2021;31(9):35–51. 10.9734/mr- ji/2021/v31i930344.
Stohr J. Plasmid mediated resistance to β -lactam antibiotics in Enterobacteriaceae:
mechanisms and detection of plasmid transmission. 2021;p. 35–36.
Bohnert JA, Schuster S, Fähnrich E, Trittler R, Kern W. Altered spectrum of mul- tidrug resistance associated with a single point mutation in the Escherichia coli RND- type MDR effiux pump YhiV (MdtF). J Antimicrob Chemother. 2007;59(6):1216–22. 17062614. 10.1093/jac/dkl426.
Touati A, Benallaoua S, Djoudi F, Madoux J, Brasme L, Champs D, et al. Char- acterization of CTX-M-15-Producing Klebsiella pneumoniae and Escherichia coli Strains Isolated from Hospital Environments in Algeria. Microbial Drug Resis- tance. 2007;13(2):85–94. Available from: https://doi.org/10.1089/mdr.2007.715. 10.1089/mdr.2007.715.
Abdulai M, Abubabakari ZI, Cobinna SJ, Oduro D. Bacteria loads of public transport in the Tamale Metropolis, Ghana. UDS Int J Dev. 2020;7(2):379–386. 10.47740/492.UDSIJD6i.
Shayo RZ, Lema N, Matee M. Contamination of Automated Teller Machines Surfaces with Multi-drug Resistance Gram-negative Bacteria in Dar es Salaam, Tanzania. East Africa Sci. 2023;5(1):81–91. 10.24248/easci.v5i1.78.
Gerba CP, Wuollet AL, Raisanen P, Lopez GU. Bacterial contamination of computer touch screens. Am J Infect Control. 2016;44(3):358–60. 26940596. 10.1016/j.ajic.2015.10.013.
Shen C, Feng S, Chen H, Dai M, Paterson DL, Zheng X, et al. Transmission of mcr-1-Producing Multidrug-resistant Enterobacteriaceae in Public Transporta- tion in Guangzhou, China. Clin Infect Dis. 2018;67(suppl_2):217–224. 30423047. 10.1093/cid/ciy661.
Zou ZY, Lei L, Chen QY, Wang YQ, Cai C, Li WQ, et al. Prevalence and dissemina- tion risk of antimicrobial-resistant Enterobacteriaceae from shared bikes in Beijing. Environment International. 2019;132:1–7. 10.1016/j.envint.2019.105119.
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strate- gies. Microb Cell. 2021;8(2):28–56. 33553418. 10.15698/mic2021.02.741.
Adzitey F, Huda N, Shariff A. Phenotypic Antimicrobial Susceptibility of Escherichia coli from Raw Meats, Ready-to-Eat Meats, and Their Related Samples in One Health Context. Microorganisms. 2021;9:1–11. 33562804. Available from: https://doi.org/ 10.3390/microorganisms9020326/. 10.3390/microorganisms9020326.
Farkas A, Tarco E, Butiuc-Keul A. Antibiotic resistance profiling of pathogenic Enter- obacteriaceae from Cluj-Napoca, Romania. Germs. 2019;9(1):17–27. 31119113. 10.18683/germs.2019.1153.
Davies J, Davies D. Origins and Evolution of Antibiotic Resistance. Microbiol Mol Biol Rev. 2010;74(3):417–417. 10.1128/mmbr.00016-10.
Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibi- otics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology. 2017;33(3):300–305. 10.4103/joacp.JOACP34915.
Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Frontiers in Cellular and Infection Microbiology. 2021;11:1–11. 10.3389/fcimb.2021.738223.
Lord J, Gikonyo A, Miwa A, Odoi A. Antimicrobial resistance among Enter- obacteriaceae, Staphylococcus aureus, and Pseudomonas spp. isolates from clin- ical specimens from a hospital in Nairobi, Kenya. Peer J. 2021;9:1–24. DOI 10.7717/peerj.11958.
Wang X, Zhang Y, Li C, Li G, Wu D, Li T, et al. Antimicrobial resistance of Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp. isolated from the feces of giant panda. BMC Microbiol. 2022;22(102):1–11. 10.1186/s12866-022- 02514-0.
Ntirenganya C, Manzi O, Muvunyi CM, Ogbuagu O. High Prevalence of Antimicro- bial Resistance Among Common Bacterial Isolates in a Tertiary Healthcare Facility in Rwanda. Am J Trop Med Hyg. 2015;92(4):865–870. 10.4269/ajtmh.14-0607.
Sahle Z, Engidaye G, Shenkute D, Metaferia Y, Shibabaw A. High Prevalence of Multi-Drug Resistance and Extended-Spectrum Beta-Lactamase-Producing Enter- obacteriaceae Among Hospitalized Patients Presumptive for Bacterial Infection at Debre Berhan Comprehensive Specialized Hospital, Ethiopia. Infect Drug Resist. 2022;15:2639–2656. 10.2147/IDR.S363988.
Eshetie S, Unakal C, Gelaw A, Ayelign B, Endris M, Moges F. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. Antimicrob Resist Infect Control. 2015;4(12):1–8. 10.1186/s13756-015-0054-7.
Baran I, Aksu N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann Clin Micro- biol Antimicrob. 2016;15(20):1–11. 10.1186/s12941-016-0136-2.
Leinyuy JF, Ali IM, Ousenu K, Tume CB. Molecular characterization of antimicrobial resistance related genes in E. coli, Salmonella and Klebsiella isolates from broilers in the West Region of Cameroon. PLoS One. 2023;18(1):280150–280150. 10.1371/jour- nal.pone.0280150.
Kiula AH, Makene VA. Molecular Epidemiology of Antibiotic Resistance among Escherichia coli Isolated from Broiler Chickens Sold at Selected Markets in Dar es Salaam, Tanzania. Tanzania J Sci. 2023;49(2):422–454. 10.4314/tjs.v49i2.13
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Gallus P. Haule, Juma M. Hussein, Fulgence N. Mpenda

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain all proprietary rights, including copyright, such as patent and trademark rights and rights to any process or procedure described in the article.

