Exploring PCR Methodologies in Forensic DNA Profiling

Authors

DOI:

https://doi.org/10.47419/bjbabs.v5i04.290

Keywords:

PCR, Forensic DNA analysis , Criminal investigation , Amplification , Multiplex PCR , Real- time PCR , Microfluidic PCR , Digital PCR

Abstract

Polymerase Chain Reaction (PCR) techniques have revolutionized forensic DNA analysis, enabling the precise amplification of trace DNA samples. This abstract provides a concise overview of the pivotal role of PCR in forensic science. It delves into the principles of PCR, emphasizing its ability to amplify specific DNA sequences with remarkable sensitivity and specificity. Multiplex PCR, a variant technique, allows for simultaneous amplification of multiple genetic loci, enhancing the efficiency of forensic investigations. This abstract further highlights the broad applications of PCR in criminal investigations, paternity testing, and disaster victim identification. Recent advancements, such as MiniSTRs and Next-Generation Sequencing (NGS), are elucidated for their crucial contributions in addressing challenging forensic scenarios. Despite its instrumental role, PCR-based DNA analysis is not without challenges, with considerations including DNA contamination and low-template samples. The abstract concludes with aforward-looking perspective on the emerging field of forensic epigenetics and metagenomic analysis, offering a glimpse into the promising future of PCR techniques in forensic DNA analysis. PCR stands as an indispensable tool in modern forensic science, unraveling genetic identities from the most minute of genetic traces.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

Budowle B, Van Daal A. Extracting evidence from forensic DNA analyses: future molecular biology directions. Biotechniques. 2009;46(5):339–350. 19480629. Avail- able from: https://pubmed.ncbi.nlm.nih.gov/19480629/. 10.2144/000113136.

Kruger E; 2009.

Kang T, Lu J, Yu T, Long Y, Liu G. Advances in nucleic acid amplification tech- niques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosen- sors and Bioelectronics. 2022;206(15):114109–114109. 35245867. Available from: https://pubmed.ncbi.nlm.nih.gov/35245867/. doi.org/10.1016/j.bios.2022.114109.

Weedn VW, Lee DA, Roby RK, Holland MM. DNA analysis . Handbook of Analytical Therapeutic Drug Monitoring and Toxicology. 1996;p. 35–49. Avail- able from: https://www.jpda.us/wp-content/uploads/2020/07/Victor-W.-Weedn- M.D.-J.D..pdf.

Bardan F; 2019. Available from: https://digital.library.adelaide.edu.au/dspace/ handle/2440/120161.

Butler JM. Elsevier; 2007. Available from: https://www.ojp.gov/ncjrs/virtual- library/abstracts/forensic-dna-typing-biology-technology-and-genetics-str- markers.

Zhu H, Zhang H, Xu Y, Laššáková S, Korabečná M, Neužil P. PCR past, present and future. BioTechniques. 2020;69(4):317–325. 32815744. Available from: https:

//pubmed.ncbi.nlm.nih.gov/32815744/. doi.org/10.2144/btn-2020-0057.

Marzilli A. DNA Evidence. In: and others, editor. DNA Evidence. Infobase Publishing; 2009. Available from: https://books.google.iq/books? hl=en&lr=&id=bAW0hd2_vKgC&oi=fnd&pg=PA5&dq=Marzilli,+A.

+(2009).+DNA+evidence.+Infobase+Publishing.&ots=MV-aRBVaOr&sig= ClDWF1GhJDnULXkSMdHI4cZVfRc&redir_esc=y#v=onepage&q=Marzilli% 2C%20A.%20(2009).%20DNA%20evidence.%20Infobase%20Publishing.&f=false.

Sozer AC. DNA analysis for missing person identification in mass fatalities. In: and others, editor. DNA analysis for missing person identification in mass fatalities. CRC Press; 2014. Available from: https://books.google.iq/books?hl= en&lr=&id=56GNAgAAQBAJ&oi=fnd&pg=PP1&dq=Sozer,+A.+C.+(2014).+ DNA+analysis+for+missing+person+identification+in+mass+fatalities.+CRC+ Press.&ots=dhZW33EtA8&sig=EFrRlJ24kv_6U25Y2cozB3sXNhA&redir_esc=y# v=onepage&q=Sozer%2C%20A.%20C.%20(2014).%20DNA%20analysis%20for% 20missing%20person%20identification%20in%20mass%20fatalities.%20CRC% 20Press.&f=false.

Rana AK. Crime investigation through DNA methylation analysis: methods and applications in forensics. Egyptian Journal of Forensic Sciences. 2018;8(1):7–7. Available from: https://ejfs.springeropen.com/articles/10.1186/s41935-018-0042- 1. doi.org/10.1186/s41935-018-0042-1.

Alketbi SK. The role of DNA in forensic science: A comprehensive review. Alketbi, SK (2023) The role of DNA in forensic science: A com- prehensive review. International Journal of Science and Research Archive. 2023;09(02):814–829. Available from: https://www.researchgate.net/publication/ 373513589_The_role_of_DNA_in_forensic_science_A_comprehensive_review/ fulltext/64ef848567890027e16f45de/The-role-of-DNA-in-forensic-science-A- comprehensive-review.pdf. doi.org/10.2139/ssrn.4550489.

Bashari MA. Development of polymerase chain reaction knowledge. Inter Res Sci Develop J. 2020;1(3):38–64.

Joshi M, Deshpande JD. Polymerase chain reaction: methods, principles, and application. International Journal of Biomedical Research. 2011;2(1):81–

Available from: https://ssjournals.co.in/index.php/ijbr/article/view/640. https://doi.org/10.7439/ijbr.v2i1.83.

Coleman WB, Tsongalis GJ. Molecular diagnostics: For the clinical laboratorian. In: and others, editor. Molecular diagnostics: For the clinical laboratorian; 2005. p. 47–55.

Van Pelt-Verkuil E, Witt R. Principles of PCR. Molecular Diagnostics: Part 1: Technical Backgrounds and Quality Aspects. In: and others, editor. Prin- ciples of PCR. Molecular Diagnostics: Part 1: Technical Backgrounds and Quality Aspects. Springer Nature Singapore Pte Ltd; 2019. p. 131–215. Avail- able from: https://www.researchgate.net/publication/333641308_Molecular_ Diagnostics_Part_1_Technical_Backgrounds_and_Quality_Aspects_E_van_Pelt- Verkuil_WB_van_Leeuwen_and_R_te_Witt_DOI_101007978-981-13-1604-3_6. 10.1007/978-981-13-1604-36.

Jozefczuk J, Adjaye J. Quantitative real-time PCR-based analysis of gene expression.

In Methods in enzymology. 2011;500:99–109. 21943894. Available from: https:

//pubmed.ncbi.nlm.nih.gov/21943894/. 10.1016/B978-0-12-385118-5.00006-2.

Dash HR, Yadav T, Arora M. Advancements in Forensic DNA Analy- sis in Generating Investigation Leads and Elimination of Innocents. In: Justice F, editor. Forensic Justice; 2024. p. 294–311. Available from: https://www.taylorfrancis.com/chapters/edit/10.4324/9781032629346- 20/advancements-forensic-dna-analysis-generating-investigation-leads- elimination-innocents-hirak-ranjan-dash-tanvi-yadav-mansi-arora.

Wittwer CT, Makrigiorgos GM. Nucleic acid techniques. Elsevier; 2018. p. 47–

Available from: https://shop.elsevier.com/books/principles-and-applications- of-molecular-diagnostics/rifai/978-0-12-816061-9.

Ståhlberg A, Krzyzanowski PM, Egyud M, Filges S, Stein L, Godfrey TE. Simple multiplexed PCR-based barcoding of DNA for ultrasensitive mutation detection by next-generation sequencing. Nature protocols. 2017;12(4):664–682.

Yang Z, Shen B, Yue L, Miao Y, Hu Y, Ouyang R. Application of Nanomaterials to Enhance Polymerase Chain Reaction. Molecules. 2022;27(24):8854–8854.

Pelt-Verkuil EV, Witt R; 2019.

Gottesman ME, Chudaev M, Mustaev A. Key features of magnesium that under- pin its role as the major ion for electrophilic biocatalysis. The FEBS Journal. 2020;287(24):5439–5463.

Shahzad S, Afzal M, Sikandar S, Afzal I. Polymerase chain reaction; 2020. Available from: https://www.intechopen.com/chapters/70299. 10.5772/intechopen.81924.

Taylor J. Understanding the Effects of Temperature on Electrostatic DNA Denatu- ration; 2022. Available from: https://repository.usfca.edu/thes/1438/.

Bashari MA. Development of polymerase chain reaction knowledge. Inter Res Sci Develop J. 2020;1(3):38–64.

Montgomery JL, Rejali N, Wittwer CT. The influence of nucleotide sequence and temperature on the activity of thermostable DNA polymerases. The Journal of Molecular Diagnostics. 2014;16(3):305–313. Available from: https://www.sciencedirect.com/science/article/pii/S152515781400035X. https://doi.org/10.1016/j.jmoldx.2014.01.006.

Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M. How good is a PCR effi- ciency estimate: Recommendations for precise and robust qPCR efficiency assess- ments. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments Biomolecular detection and quantifica- tion. 2015;3:9–16. Available from: https://www.sciencedirect.com/science/article/ pii/S2214753515000169. https://doi.org/10.1016/j.bdq.2015.01.005.

Shrivastava P, Jain T, Trivedi VB. DNA fingerprinting: a substantial and imperative aid to forensic investigation. Eur J Forensic Sci. 2016;3(3):23–30. Available from: https://www.researchgate.net/publication/292944680_DNA_Fingerprinting_A_ substantial_and_imperative_aid_to_forensic_investigation. 10.5455/ejfs.204929.

Kling D, Phillips C, Kennett D, Tillmar A. Investigative genetic genealogy: Cur- rent methods, knowledge and practice. Forensic Science International: Genetics. 2021;52:102474–102474. 33592389. Available from: https://pubmed.ncbi.nlm.nih. gov/33592389/. 10.1016/j.fsigen.2021.102474.

Al-Rawee RY, Ahmed SH, Tawfeeq BAG. Role of dental evidences in persons foren- sic identification in Nineveh Province. J Dent Sci Res Rev Rep. 2023;150:2–10. Available from: https://www.onlinescientificresearch.com/articles/role-of-dental- evidences-in-persons-forensic-identification-in-nineveh-province.pdf.

Sijen T, Harbison S. On the identification of body fluids and tissues: a cru- cial link in the investigation and solution of crime. Genes. 2021;12(11):1728– 1728. 34828334. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8617621/. 10.3390/genes12111728.

Kaur L, Sharma SG. Forensic DNA analysis: a powerful investigative tool. In: Crime Scene Management within Forensic Science, Forensic Techniques for Criminal Investigations. Springer; 2022. p. 1–40. Avail- able from: https://www.researchgate.net/publication/359448986_Forensic_DNA_ Analysis_A_Powerful_Investigative_Tool. 10.1007/978-981-16-6683-41.

Molecular biology techniques and applications. In: Rapley, R, Whitehouse, D, editors. Molecular biology and biotechnology. Royal Society of Chemistry; 2015. Available from: https://researchprofiles.herts.ac.uk/en/publications/molecular- biology-techniques-and-applications.

Sahu MK, Jha H. DNA TECHNOLOGY: A POTENTIAL TOOL IN FORENSIC SCIENCE-A REVIEW. Journal of Experimental Zoology India. 2024;(1):27–27.

Siloto RM, Weselake RJ. Site saturation mutagenesis: Methods and applications in protein engineering. Biocatalysis and Agricultural Biotechnology. 2012;1(3):181–

Available from: https://www.infona.pl/resource/bwmeta1.element.elsevier- efcec4a7-6858-3632-935c-e20ce7f279d8. 10.1016/j.bcab.2012.03.010.

Blanco L; 2001.

Wu H, Zhang S, Chen Y, Qian C, Liu Y, Shen H, et al. Progress in molecu- lar detection with high-speed nucleic acids thermocyclers. Journal of Pharma- ceutical and Biomedical Analysis. 2020;p. 113489–113489. Available from: https:

//pubmed.ncbi.nlm.nih.gov/32791435/. 10.1016/j.jpba.2020.113489.

Green MR, Sambrook J. Polymerase chain reaction. Cold Spring Harbor Protocols. 2019;(6):95109–95109. 31160389. Available from: https://pubmed.ncbi.nlm.nih. gov/31160389/. 10.1101/pdb.top095109.

Rasmussen RS, Morrissey MT. DNA-Based Methods for the Identification of Com- mercial Fish and Seafood Species. 2008;7:280–295. 33467804. Available from: https://pubmed.ncbi.nlm.nih.gov/33467804/. 10.1111/j.1541-4337.2008.00046.x.

Birch C. Development and integration of simplified real-world to chip interfaces for use in the detection of infectious diseases; 2014. Available from: https://hull- repository.worktribe.com/output/4216252.

Pestana E, Belak S, Diallo A, Crowther JR, Viljoen GJ, Pestana EA, et al. Early, Rapid and Sensitive Veterinary Molecular Diagnostics - Real Time PCR Applications. and others, editor. Springer; 2010. Available from: https://gene-quantification.de/ veterinary-mol-diagn-real-time-PCR-2010.pdf. 10.1007/978-90-481-3132-7.

Dorak, ) MTE, editors. Real-time PCR. 1st ed. Taylor & Francis; 2006. Avail- able from: https://www.taylorfrancis.com/books/edit/10.4324/9780203967317/ real-time-pcr-dorak. https://doi.org/10.4324/9780203967317.

Provenzano M, Mocellin S. Complementary techniques: validation of gene expres- sion data by quantitative real time PCR. 2007;p. 66–73. 17265717. Available from: https://pubmed.ncbi.nlm.nih.gov/17265717/. 10.1007/978-0-387-39978-27.

Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M. Biomolecular Detec-

tion and Quantification. How good is a PCR efficiency estimate: Recommenda- tions for precise and robust qPCR efficiency assessments Biomolecular detection and quantification. 2015;3:9–16. Available from: https://www.sciencedirect.com/ science/article/pii/S2214753515000169. https://doi.org/10.1016/j.bdq.2015.01.005.

Alonso A, Martín P, Albarrán C, García P, Primorac D, García O, et al. Spe- cific quantification of human genomes from low copy number DNA samples in forensic and ancient DNA studies. Croatian Medical Journal. 2003;44(3):273–280.

Available from: https://pubmed.ncbi.nlm.nih.gov/12808718/.

Navarro E, Serrano-Heras G, Castaño MJ, Solera JJCCA. Real-time PCR detection chemistry. Clinica chimica acta. 2015;439:231–250. 25451956. Available from: https://pubmed.ncbi.nlm.nih.gov/25451956/. 10.1016/j.cca.2014.10.017.

Kashyap VK, Sitalaximi T, Chattopadhyay P, Trivedi R. DNA profiling technolo- gies in forensic analysis. International Journal of Human Genetics. 2004;4(1):11–

Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type= pdf&doi=1523492f34d402bc32c75a5e5b45a1478180dab2.

Butler JM. Advanced Topics in Forensic DNA Typing: Interpretation. and others, editor. Academic Press; 2015. Available from: https://www.sciencedirect.com/ book/9780124052130/advanced-topics-in-forensic-dna-typing-interpretation. https://doi.org/10.1016/C2011-0-07649-4.

Ballard D, Winkler-Galicki J, Wesoły J. Massive parallel sequencing in forensics: advantages, issues, technicalities, and prospects. International Journal of Legal Medicine. 2014;128(2):205–218. PMC7295846. Available from: https://pubmed. ncbi.nlm.nih.gov/32451905/. 10.1007/s00414-020-02294-0.

Tayyeb A, Basit Z. Polymerase Chain Reaction. In: and others, edi- tor. Genetic Engineering. Apple Academic Press; 2023. p. 119–146. Avail- able from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003378266- 6/polymerase-chain-reaction-asima-tayyeb-zhuha-basit.

Barba D, Miquel M, Lobréaux C, Quenette S, Swenson PY, Taberlet JE, et al. High- throughput microsatellite genotyping in ecology: Improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Molecular Ecol- ogy Resources. 2017;17(3):492–507. 27505280. Available from: https://pubmed. ncbi.nlm.nih.gov/27505280/. 10.1111/1755-0998.12594.

Rodríguez A, Rodríguez M, Córdoba JJ, Andrade MJ. Design of primers and probes for quantitative real-time PCR methods. 2015;p. 31–56. 25697650. Available from: https://pubmed.ncbi.nlm.nih.gov/25697650/. 10.1007/978-1-4939-2365-63.

Scheible M, Loreille O, Just R, Irwin J. Short tandem repeat typing on the

platform: strategies and considerations for targeted sequencing of com- mon forensic markers. Forensic Science International: Genetics. 2014;12:107–

24908576. Available from: https://pubmed.ncbi.nlm.nih.gov/24908576/. 10.1016/j.fsigen.2014.04.010.

Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reac- tion: a practical approach. Journal of clinical laboratory analysis. 2002;16(1):47–

11835531. Available from: https://pubmed.ncbi.nlm.nih.gov/11835531/. 10.1002/jcla.2058.

Mehta BM; 2019. Available from: https://researchprofiles.canberra.edu.au/en/ studentTheses/genotyping-tools-for-forensic-dna-phenotyping-from-low-to- high-th.

Dror IE. Practical solutions to cognitive and human factor challenges in foren- sic science. Forensic Science Policy & Management: An International Journal.

;4(3-4):105–113. Available from: https://www.tandfonline.com/doi/abs/10. 1080/19409044.2014.901437. https://doi.org/10.1080/19409044.2014.901437.

Mccord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, et al. Forensic DNA analysis. Analytical chemistry. 2018;91(1):673– 688. 30485738. Available from: https://pubmed.ncbi.nlm.nih.gov/30485738/. 10.1021/acs.analchem.8b05318.

Ali ME, Razzak MA, Hamid SBA. Multiplex PCR in species authentication: probability and prospects-a review. Food Analytical Methods. 2014;7:1933–1949. Available from: https://www.researchgate.net/publication/261439281_Multiplex_ PCR_in_Species_Authentication_Probability_and_Prospects-A_Review. 10.1007/s12161-014-9844-4.

Butler JM. The future of forensic DNA analysis. The future of forensic DNA analysis Philosophical transactions of the royal society B: biological sciences. 1674;370. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb. 2014.0252. https://doi.org/10.1098/rstb.2014.0252.

Kreitmann L, Miglietta L, Xu K, Malpartida-Cardenas K, Souza G, Kaforou M, et al. Next-generation molecular diagnostics: Leveraging digital technologies to enhance multiplexing in real-time PCR. TrAC Trends in Analytical Chemistry. 2023;160:116963–116963. Available from: https://www.sciencedirect.com/science/ article/pii/S016599362300050X. https://doi.org/10.1016/j.trac.2023.116963.

Green MR, Sambrook J. Optimizing primer and probe concentrations for use in real-time polymerase chain reaction (PCR) assays. Cold Spring Harbor Protocols. 2018;(10):95018–95018. 30275074. Available from: https://pubmed.ncbi.nlm.nih. gov/30275074/. 10.1101/pdb.prot095018.

Savazzini F, Martinelli L. DNA analysis in wines: Development of meth- ods for enhanced extraction and real-time polymerase chain reaction quan- tification. Analytica Chimica Acta. 2006;563(1-2):274–282. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0003267005017988. https://doi.org/10.1016/j.aca.2005.10.078.

Mousaabadi KZ, Vandishi ZT, Kermani M, Arab N, Ensafi AA. Recent devel- opments toward microfluidic point-of-care diagnostic sensors for viral infections. TrAC Trends in Analytical Chemistry. 2023;p. 117361–117361. Available from: https://colab.ws/articles/10.1016/j.trac.2023.117361. 10.1016/j.trac.2023.117361.

Yeo LY, Chang HC, Chan PP, Friend JR. Microfluidic devices for bioapplications. small. 2011;7(1):12–48. 21072867. Available from: https://pubmed.ncbi.nlm.nih. gov/21072867/. 10.1002/smll.201000946.

Gorgannezhad L, Stratton H, Nguyen NT. Micromachines; 2019. Available from: https://www.mdpi.com/2072-666X/10/6/408. https://doi.org/10.3390/mi10060408.

Horsman KM, Bienvenue JM, Blasier KR, Landers JP. Forensic DNA analysis on microfluidic devices: a review. Journal of forensic sciences. 2007;52(4):784– 799. 27527231. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5039660/. 10.3390/bios6030041.

Lee NY. A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Microchimica Acta. 2018;185:1–22. 29736588. Available from: https://pubmed.ncbi.nlm.nih.gov/29736588/. 10.1007/s00604- 018-2791-9.

Bruijns B, Knotter J, Tiggelaar R. A Systematic Review on Commer- cially Available Integrated Systems for Forensic DNA Analysis. Sensors. 2023;23(3):1075–1075. Available from: https://www.mdpi.com/1424-8220/23/3/ 1075. https://doi.org/10.3390/s23031075.

Zhang C, Xu J, Ma W, Zheng W. PCR microfluidic devices for DNA amplification. Biotechnology advances. 2006;24(3):243–284.

Miralles V, Huerre A, Malloggi F, Jullien MC. A review of heating and temper- ature control in microfluidic systems: techniques and applications. Diagnostics. 2013;3(1):33–67. 26835667. Available from: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4665581/. 10.3390/diagnostics3010033.

Nouwairi RL, Cunha LL, Turiello R, Scott O, Hickey J, Thomson S, et al.; 2022. Avail- able from: https://pubs.rsc.org/en/content/articlelanding/2022/lc/d2lc00495j.

Hua Z, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, et al. Mul- tiplexed real-time polymerase chain reaction on a digital microfluidic platform. Analytical chemistry. 2010;82(6):2310–2316. 20151681. Available from: https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC2859674/. 10.1021/ac902510u.

Zhang C, Xing D. Single-molecule DNA amplification and analysis using microflu- idics. Chemical reviews. 2010;110(8):4910–4947. Available from: https://pubs.acs. org/doi/10.1021/cr900081z.

Turiello R, Nouwairi RL, Landers JP. Taking the microfluidic approach to nucleic acid analysis in forensics: Review and perspectives. Forensic Science International: Genetics. 2023;63:102824–102824. 36592574. Available from: https://pubmed. ncbi.nlm.nih.gov/36592574/. 10.1016/j.fsigen.2022.102824.

Schneegass I, Bräutigam R. Advances in Lab-on-a-Chip Technologies for Forensic Science. Forensic Science International. 2016;264:75–84. Available from: https:

//www.researchgate.net/publication/309609671_Lab-on-Chip_Technology_A_ Review_on_Design_Trends_and_Future_Scope_in_Biomedical_Applications. 10.14257/ijbsbt.2016.8.5.28.

Liu Y, Sun Y, Liao Y. High-throughput microfluidic systems for biochemical anal- ysis. Analytical and Bioanalytical Chemistry. 2011;399(6):2255–2268.

Hasan MN; 2020. Available from: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/ 1501/10?clear=10&p10_accession_num=case157979860948204.

Dandurand Y. Criminal justice reform and the system’s efficiency. In: Criminal Law Forum. vol. 25. Springer; 2014. p. 383–440. Available from: https://www.researchgate.net/publication/286228531_Criminal_Justice_Reform_ and_the_System%27s_Efficiency. 10.1007/s10609-014-9235-y.

Nouwairi RL, Connell KC, Gunnoe LM, Landers JP. Microchip electrophoresis for fluorescence-based measurement of polynucleic acids: recent developments. Analytical Chemistry. 2020;93(1):367–387. 33351599. Available from: https:

//pubmed.ncbi.nlm.nih.gov/33351599/. 10.1021/acs.analchem.0c04596.

Wu X, Tay JK, Goh CK, Chan C, Lee YH, Springs SL, et al. Digital CRISPR-based method for the rapid detection and absolute quantification of nucleic acids. Bioma- terials. 2021;p. 120876–120876. 34034027. Available from: https://pubmed.ncbi. nlm.nih.gov/34034027/. 0.1016/j.biomaterials.2021.120876.

Wei Y, Cheng G, Ho HP, Ho YP, Yong KT. Thermodynamic perspectives on liquid-liquid droplet reactors for biochemical applications. Chemical Society Reviews. 2020;49(18):6555–6567. Available from: https://pubs.rsc.org/en/content/ articlelanding/2020/cs/c9cs00541b.

Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosensors and Bioelectronics. 2017;90:459–474. 27818047. Available from: https://pubmed.ncbi. nlm.nih.gov/27818047/. 10.1016/j.bios.2016.09.082.

Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. TrAC Trends in Analytical Chem- istry. 2023;158:116897–116897. Available from: https://ouci.dntb.gov.ua/works/ 7BBjeNo7/. https://doi.org/10.1016/j.trac.2022.116897.

Vandereyken K, Sifrim A, Thienpont B, Voet T. Methods and applications for single- cell and spatial multi-omics. Nature Reviews Genetics. 2023;p. 1–22. Available from: https://www.nature.com/articles/s41576-023-00580-2.

Van Oorschot RA, Ballantyne KN, Mitchell RJ. Forensic trace DNA: a review. Inves- tigative genetics. 2010;1(1):1–17. Available from: https://investigativegenetics. biomedcentral.com/articles/10.1186/2041-2223-1-14.

Kuypers J, Jerome KR. Applications of digital PCR for clinical microbiology. Journal of clinical microbiology. 2017;55(6):1621–1628. 28298452. Available from: https:

//pubmed.ncbi.nlm.nih.gov/28298452/. 10.1128/JCM.00211-17.

; 2013.

Kessler GC, Haggerty J. Technology and Law Enforcement: Lawful Interception, Cloud Forensics, and Regulatory Compliance. Computer Law & Security Review. 2014;.

Next-generation sequencing in forensic DNA analysis. Genes (Basel). 2017;8(2):78–

28948844. Available from: https://pubmed.ncbi.nlm.nih.gov/28948844/. 10.1080/03014460.2017.1375155.

Baldridge. Digital PCR for quantification and in situ localization of rare tar- get sequences. Nucleic Acids Research. 2017;45(e141):141–141. 32365599. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247671/. 10.3390/ijms21093141.

Butler, Butler JM; 2006.

Li. Microfluidic devices for DNA amplification. Microfluidics and Nanofluidics. 2011;10(1-4):203–213. 31248141. Available from: https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC6630468/. 10.3390/mi10060408.

Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. TrAC Trends in Analytical Chemistry. 2023;158:116897–116897.

Beja-Pereira ALBANO, Oliveira R, Alves PC, Schwartz MK, Luikart G. Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular ecology resources. 2009;9(5):1279–1301.

Lei S, Chen S, Zhong Q. Digital PCR for accurate quantification of pathogens: principles, applications, challenges and future prospects. International Journal of Biological Macromolecules. 2021;184:750–759. 21564900. Available from: https:

//pubmed.ncbi.nlm.nih.gov/21564900/. 10.1111/j.1755-0998.2009.02699.x.

Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen NT. Digital polymerase chain reaction technology-recent advances and future perspectives. Lab on a Chip. 2018;18(24):3717–3732. 34171259. Available from: https://pubmed.ncbi.nlm.nih. gov/34171259/. 10.1016/j.ijbiomac.2021.06.132.

Bustin. Quantifying RNA using real-time PCR and relative quantification cycle threshold method. Nature protocols. 2009;4(11):1745–1759. 25361954. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247583/. 10.1105/tpc.114.130641.

Dash HR, Yadav T, Arora M. Advancements in Forensic DNA Analysis in Gener- ating Investigation Leads and Elimination of Innocents. Justice F, editor; 2024.

Cavanaugh SE, Bathrick AS. Direct PCR amplification of forensic touch and other challenging DNA samples: a review. Forensic science international: Genet- ics. 2018;32:40–49. 29059581. Available from: https://pubmed.ncbi.nlm.nih.gov/ 29059581/. 10.1016/j.fsigen.2017.10.005.

Rudin N, Inman K. An Introduction to Forensic DNA Analysis. CRC press; 2001. Available from: https://www.routledge.com/An-Introduction-to-Forensic- DNA-Analysis/Rudin-Inman/p/book/9780849302336?srsltid=AfmBOoqg-qM6_ XwzzYDa3SInupjCc5lt-b_rH7kHkqaE9BRldgU0EhEr.

Cornish NE, Anderson NL, Arambula DG, Arduino MJ, Bryan A, Burton NC, et al. Clinical laboratory biosafety gaps: lessons learned from past outbreaks reveal a path to a safer future. Clinical microbiology reviews. 2021;34(3):10– 1128. 34105993. Available from: https://pubmed.ncbi.nlm.nih.gov/34105993/. 10.1128/CMR.00126-18.

Vajpayee K, Dash HR, Parekh PB, Shukla RK. PCR Inhibitors and Facilitators-Their Role in Forensic DNA Analysis. Forensic Science International. 2023;p. 111773– 111773. 37399774. Available from: https://pubmed.ncbi.nlm.nih.gov/37399774/. 10.1016/j.forsciint.2023.111773.

Piyamongkol W, Bermúdez MG, Harper JC, Wells D. Detailed investigation of factors influencing amplification efficiency and allele drop-out in single cell PCR: implications for preimplantation genetic diagnosis. Molecular Human Repro-

duction. 2003;9(7):411–420. Available from: https://academic.oup.com/molehr/ article/9/7/411/1088097. https://doi.org/10.1093/molehr/gag051.

Putkonen MT, Palo JU, Cano JM, Hedman M, Sajantila A. Factors affecting the STR amplification success in poorly preserved bone samples. Investigative genet- ics. 2010;1:1–7. 21092342. Available from: https://pubmed.ncbi.nlm.nih.gov/ 21092342/. 10.1186/2041-2223-1-9.

Schöfl G, Lang K, Quenzel P, Böhme I, Sauter J, Hofmann JA, et al. 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned. BMC genomics. 2017;18(1):1–16. Available from: https://bmcgenomics.biomedcentral. com/articles/10.1186/s12864-017-3575-z.

Baine I, Hui P. Practical applications of DNA genotyping in diagnos- tic pathology. Expert Review of Molecular Diagnostics. 2019;19(2):175–

30638393. Available from: https://pubmed.ncbi.nlm.nih.gov/30638393/. 10.1080/14737159.2019.1568874.

Chen E. Preliminary investigation of thermostable DNA polymerases to reduce PCR amplification artifacts (Doctoral dissertation. Boston University; 2020. Avail- able from: https://open.bu.edu/handle/2144/41190.

Budowle B, Eisenberg AJ, Daal AV. Validity of low copy number typing and applications to forensic science. Croatian medical journal. 2009;50(3):207–

19480017. Available from: Budowle,B.,Eisenberg,A.J.,&Daal,A.V. (2009).Validityoflowcopynumbertypingandapplicationstoforensicscience. Croatianmedicaljournal,50(3),207-217.. 10.3325/cmj.2009.50.207.

Kling D, Phillips C, Kennett D, Tillmar A. Investigative genetic genealogy: Cur- rent methods, knowledge and practice. Forensic Science International: Genetics. 2021;52:102474–102474. doi.org/10.1016/j.fsigen.2021.102474.

Butler JM; 1674. Available from: https://www.sciencedirect.com/science/article/ pii/S1872497321000132. https://doi.org/10.1016/j.fsigen.2021.102474.

Gill P, Bleka Ø, Hansson O, Benschop C, Haned H. Forensic Practitioner’s Guide to the Interpretation of Complex DNA Profiles. and others, editor. Academic Press; 2020. Available from: https://shop.elsevier.com/books/forensic-practitioners- guide-to-the-interpretation-of-complex-dna-profiles/gill/978-0-12-820562-4.

Guanglin H, Lan-Hai W, Mengge W. Forensic investigative genetic genealogy and fine-scale structure of human populations. Frontiers in Genetics. 2023;13:1067865– 1067865. Available from: https://www.frontiersin.org/journals/genetics/articles/ 10.3389/fgene.2022.1067865/full. 10.3389/fgene.2022.1067865.

Kadja T. Intelligent Real-Time Polymerase Chain Reaction System with Integrated Nucleic Acid Extraction for Point-of-Care Medical Diagnostics (Doctoral disserta- tion. and others, editor; 2023. Available from: https://www.mdpi.com/1424-8220/ 23/10/4604. https://doi.org/10.3390/s23104604.

Turiello R, Nouwairi RL, Landers JP. Taking the microfluidic approach to nucleic acid analysis in forensics: Review and perspectives. Forensic Science International: Genetics. 2023;63:102824–102824. 36592574. Available from: https://pubmed.

ncbi.nlm.nih.gov/36592574/. 10.1016/j.fsigen.2022.102824.

Mccord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, et al. Forensic DNA analysis. Analytical chemistry. 2018;91(1):673– 688. 30485738. Available from: https://pubmed.ncbi.nlm.nih.gov/30485738/. 10.1021/acs.analchem.8b05318.

Barash M, Mcnevin D, Fedorenko V, Giverts P. Machine learning applications in forensic DNA profiling: A critical review. Forensic Science International: Genetics. 2023;doi.org/10.1016/j.fsigen.2023.102994.

Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next- generation sequencing technology: Current trends and advancements. Biology. 2023;12(7):997–997. 37508427. Available from: https://pubmed.ncbi.nlm.nih.gov/ 37508427/. 10.3390/biology12070997.

Stuart T, Satija R. Integrative single-cell analysis. Nature reviews genetics. 2019;20(5):257–272. Available from: https://www.nature.com/articles/s41576- 019-0093-7.

Downloads

Published

20-12-2024

How to Cite

Exploring PCR Methodologies in Forensic DNA Profiling. (2024). Baghdad Journal of Biochemistry and Applied Biological Sciences, 5(4), 192-220. https://doi.org/10.47419/bjbabs.v5i04.290

Metrics

Share