Applications of Nanotechnology in Drug Delivery Systems
DOI:
https://doi.org/10.47419/bjbabs.v5i3.295Keywords:
Nanotechnology, drug delivery, nanoparticles, healthcareAbstract
Nanotechnology offers a revolutionary approach to drug delivery systems, with nanoparticles playing a central role. These particles, typically sized between 1 and 100 nanometers, possess unique properties that enhance medication effectiveness and reduce side effects. This article explores the key applications of nanotechnology in drug delivery. The ability to deliver drugs directly to target sites is a significant advantage. Nanoparticles can be engineered to navigate biological barriers and reach specific cells or tissues, minimizing damage to healthy areas. This targeted approach is particularly valuable in cancer treatment, where it can significantly reduce the cytotoxicity of chemotherapeutic drugs. Nanotechnology improves the solubility and bioavailability of poorly soluble drugs. By encapsulating drugs within nanoparticles, their absorption and therapeutic effect are significantly enhanced.
Metrics
Downloads
References
Picraux ST; 2025.
Samuel HS, Ekpan FM. Revolutionizing Drugs Administration: Techniques in Drug Delivery and Development. Int J Biochem Physiol. 2023;8(2):1–15. 10.23880/ijbp- 16000238.
Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58(14):1456–1459. 10.1016/j.addr.2006.09.011.
Ori MO, Ekpan FDM, Samuel HS, Egwuatu OP. Integration of Artificial Intelligence in Nanomedicine. Eurasian J Sci Tech. 2024;4(2):88 –104. 10.48309/ejst.2024.422419.1105.
Filipponi L, Nicolau DV. Cell Patterning. John Wiley & Sons; 2006. 10.1002/9780471740360.ebs1350.
Egwuatu OP, Ori MO, Samuel HS, Ekpan FM. AI-enabled Diagnostics and Monitoring in Nanomedicine. Eurasian Journal of Science and Technology. 2024;4(3):208– 229. 10.48309/ejst.2024.426725.1116.
Lombardo D, Kiselev MA, Caccamo MT. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. J Nanomater. 2019;2019(1):1–26. 10.1155/2019/3702518.
Ekpan FDM, Ori MO, Samuel HS, Ekpan FM. The Synergy of AI and Drug Deliv- ery: A Revolution in Healthcare. International Journal of Advanced Biological and Biomedical Research. 2024;12(1):44–66. 10.48309/ijabbr.2024.2014408.1467.
Zhao Y, Bai C, Brinker CJ, Chi L, Dawson KA, Gogotsi Y, et al. Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano. 2019;13(10):10853–10855. 10.1021/acsnano.9b08042.
Gul-Uludağ H, Valencia-Serna J, Kucharski C, Curtis LAM, Jiang X, Lar- ratt L, et al. Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+ acute myeloid leukemia cells. Leuk Res . 2014;38(11):1299–1308. 10.1016/j.leukres.2014.08.008.
Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochem- ical Properties on Responses in Biological Systems. Polymers. 2023;15(7):1596–1596. 10.3390/polym15071596.
Gavas S, Quazi S, Karpiński TM. Nanoparticles for Cancer Therapy: Cur- rent Progress and Challenges. Nanoscale research letters. 2021;16(173):1–21. 10.1186/s11671-021-03628-6.
Dadwal A, Baldi A, Narang RK. Nanoparticles as carriers for drug deliv- ery in cancer. Artif Cells Nanomed Biotechnol. 2018;46(2):295–305. 10.1080/21691401.2018.1457039.
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Frontiers in molecular biosciences. 2020;7. 10.3389/fmolb.2020.00193.
Sikora T, Morawska K, Lisowski W, Rytel P, Dylong A. Application of Optical Meth- ods for Determination of Concentration of Doxorubicin in Blood and Plasma. Pharmaceutics. 2022;15(2):112–112. 10.3390/ph15020112.
Yamada S, Shanbhag S, Mustafa K. Scaffolds in Periodontal Regenerative Treatment. Dent Clin North Am . 2022;66(1):111–130. 10.1016/j.cden.2021.06.004.
Montaseri H, Kruger CA, Abrahamse H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics. 2021;13(3):296– 296. 10.3390/pharmaceutics13030296.
Reis DR, Zin G, Senna EL, Ambrosi A, Luccio MD. A modified premix method for the emulsification of spearmint essential oil (Mentha spicata) by ceramic membranes. Surfaces and Interfaces. 2021;26. 10.1016/j.surfin.2021.101328.
Bustamante-Torres M, Pino-Ramos VH, Romero-Fierro D, Hidalgo-Bonilla SP, Magaña H, Bucio E. Synthesis and Antimicrobial Properties of Highly Cross-Linked pH-Sensitive Hydrogels through Gamma Radiation. Polymers. 2021;13(14):2223– 2223. 10.3390/polym13142223.
Alaei S, Ghasemian E, Vatanara A. Spray drying of cefixime nanosuspension to form stabilized and fast dissolving powder. Powder Technology. 2016;288:241–248. 10.1016/j.powtec.2015.10.051.
Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Phar- macol . 2010;79(3):330–338. 10.1016/j.bcp.2009.09.003.
Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR. Criti- cal Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers. 2021;13(16):2623–2623. 10.3390/polym13162623.
Rizwan K, Rasheed T, Bilal M. 10 - Nano-biodegradation of polymers. Biodegrada- tion and Biodeterioration At the Nanoscale. 2022;p. 213–238. 10.1016/B978-0-12- 823970-4.00010-5.
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. Journal of Medicinal Chem- istry. 2021;64(19):14046–14128. 10.1021/acs.jmedchem.1c01215.
Lin B, Weiwei L, Chen Z, Zhang Y, Duan Y, Lu X, et al. Enhancing the Poten- tial of Miniature-Scale DNA-Compatible Radical Reactions via an Electron Donor– Acceptor Complex and a Reversible Adsorption to Solid Support Strategy. Organic Letters. 2021;23(19):7381–7385. 10.1021/acs.orglett.1c02562.
Kosmidou T. Structural, mechanical and electrical characterization of epoxy- amine/carbon black nanonocomposites. Express Polym Lett. 2008;2(5):364–372. 10.3144/expresspolymlett.2008.43.
Gacitua W, Ballerini A, Zhang J. Polymer nanocomposites: synthetic and natural fillers a review. Maderas Cienc y Tecnol. 2005;7(3):159–178.
Dan N, Setua S, Kashyap VK, Khan S, Jaggi M, Yallapu MM, et al. Antibody-Drug Conjugates for Cancer Therapy: Chemistry to Clinical Implications. Pharmaceuti- cals (Basel) . 2018;11(2):32–32. 10.3390/ph11020032.
Polakis P. Antibody Drug Conjugates for Cancer Therapy. Pharmacol Rev. 2016;68(1):3–19. 10.1124/pr.114.009373.
Kumar R, Chalarca CFS, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, et al. Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews. 2016;121:11527–11652. 10.1021/acs.chemrev.0c00997.
Chen G, Katrekar D, Mali P. RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing. Biochemistry. 2019;58(15):1947–1957. 10.1021/acs.biochem.9b00046.
Brightman MW. Morphology of blood-brain interfaces. Exp Eye Res. 1977;25(1):1– 25. 10.1016/S0014-4835(77)80008-0.
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharmaceut Sci. 2003;6:252–273. 12935438.
Amić A, Marković Z, Klein E, Marković JMD, Milenković D. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chem. 2018;246:481–489. 10.1016/j.foodchem.2017.11.100.
Vauthier C, Labarre D, Ponchel G. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target. 2007;15(10):641–663. 10.1080/10611860701603372.
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers. 2022;14(3):622–622. 10.3390/cancers14030622.
Glasgow MD, Chougule MB. Recent Developments in Active Tumor Targeted Multi-functional Nanoparticles for Combination Chemotherapy in Cancer Treatment and Imaging. J Biomed Nanotechnol. 2015;11(11):1859–1898. 10.1166/jbn.2015.2145.
Jianmin L, Qingluo W, Xia NG, Adilijiang Y, Li Z, Hou Z, et al. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics. 2023;15(9):2233–2233. 10.3390/pharmaceutics15092233.
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme T. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198. 10.1111/jphp.13098.
Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneg- lycols effectively prolong the circulation time of liposomes. FEBS Lett. 1997;268(1):235–237. 10.1016/0014-5793(90)81016-h.
Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–151. 10.1016/j.addr.2010.04.009.
Zou TB, He TP, Li HB, Tang HW, Xia EQ. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules . 2016;21(1):72–72. 10.3390/molecules21010072.
Torchilin VP. Micellar Nanocarriers: Pharmaceutical Perspectives. Pharm Res. 2006;24:1–16. 10.1007/s11095-006-9132-0.
Rad AH, Asiaee F, Jafari S, Shayanfar A, Lavasanifar A, Molavi O, et al. Poly(ethylene glycol)-poly(ε-caprolactone)-based micelles for solubilization and tumor-targeted delivery of silibinin. Bioimpacts. 2019;10(2):87–95. 10.34172/bi.2020.11.
Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci . 2016;83:184–202. 10.1016/j.ejps.2015.12.031.
Kwon G, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethy- lene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release. 1994;29(1-2):17–23. 10.1016/0168-3659(94)90118-X.
Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10(1):35–43. 10.1016/S1359-6446(04)03276-3.
She W, Pan D, Luo K, He B, Cheng G, Zhang C, et al. PEGylated dendrimer-doxorubicin cojugates as pH-sensitive drug delivery systems: Synthe- sis and in vitro characterization. J Biomed Nanotechnol. 2015;11(6):964–978. 10.1166/jbn.2015.1865.
Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerg- ing polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J. 2021;158:110683–110683. 10.1016/j.eurpolymj.2021.110683.
Chen L, Li J, Fan Y, Qiu J, Cao L, Laurent R, et al. Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules. 2021;21(6):2502–2511. 10.1021/acs.biomac.0c00458.
Hardenia A, Maheshwari N, Hardenia SS, Dwivedi SK, Maheshwari R, Tekade RK. Chapter 1 - Scientific Rationale for Designing Controlled Drug Delivery Systems. Basic Fundamentals of Drug Delivery. 2019;p. 1–28. 10.1016/B978-0-12-817909- 3.00001-7.
Benoit DS, Overby CT, Sims KR, Jr, Ackun-Farmmer MA. Drug delivery systems. Biomaterials Science. 2019;p. 1237–1266.
Shah A, Aftab S, Nisar J, Ashiq MN, Iftikhar FJ. Nanocarriers for Tar- geted drug delivery. J Drug Delivery Sci Technol. 2021;62:102426–102426. 10.1016/j.jddst.2021.102426.
Saleem MA, Siddique MY, Zubair M, Ashfaq M, Nazar MF. Chapter 11 - Self- nanoemulsifying drug delivery systems with bioavailability potential. Novel Plat- forms for Drug Delivery Applications. 2023;p. 257–275. 10.1016/B978-0-323-91376- 8.00001-X.
Naz F, Siddique YH. Nanotechnology: Its Application in Treating Neurode- generative Diseases. CNS Neurol Discord Drug Targets. 2021;20(1):34–53. 10.2174/1871527319666200916121515.
Wang T, Rong F, Tang Y, Li M, Feng T, Zhou Q, et al. Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Progress in Polymer Science. 2021;116:101389–
10.1016/j.progpolymsci.2021.101389.
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biology and Medicine. 2021;18(2):336–351. 10.20892/j.issn.2095-3941.2020.0510.
Lyu Y, Fang Y, Miao Q, Zhen X, Ding D, Pu K. Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranos- tics for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Nano. 2016;10(4):4472–4481. 10.1021/acsnano.6b00168.
Janib SM, Moses AS, Mackay JA. Imaging and drug delivery using therapeutic nanoparticles. Advanced drug delivery reviews. 2010;62(11):1052–1063. 10.1016/j.addr.2010.08.004.
Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Accounts of chemical research. 2011;44(10):1050–1060. 10.1021/ar200106e.
Chen F, Ehlerding EB, Cai W. Theranostic Nanoparticles. Journal of Nuclear Medicine. 2014;55(12):1919–1922. 10.2967/jnumed.114.146019.
Kelkar SS, Reineke TM. Theranostics: Combining Imaging and Therapy. Bioconju- gate Chemistry. 2011;22(10):1879–1903. 10.1021/bc200151q.
Tang M, Ji X, Xu H, Zhang L, Jiang A, Song B, et al. Photostable and Biocom- patible Fluorescent Silicon Nanoparticles-Based Theranostic Probes for Simultane- ous Imaging and Treatment of Ocular Neovascularization. Analytical chemistry. 2018;90(13):8188–8195. 10.1021/acs.analchem.8b01580.
Luong D, Sau S, Kesharwani P, Iyer AK. Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imag- ing and precise cancer cell targeting. Biomacromolecules. 2017;18(4):1197–1209. 10.1021/acs.biomac.6b01885.
Li Y, Wu Y, Chen J, Wan J, Xiao C, Guan J, et al. A simple glutathione- responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy. Nano Letters. 2019;19(8):5806–5817. 10.1021/acs.nanolett.9b02769.
Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. TrAC Trends in Analytical Chemistry. 2020;123:115759–115759. 10.1016/j.trac.2019.115759.
Sharma G, Kondelaji HR, Joshi A. X-ray and mr contrast bearing nanoparticles enhance the therapeutic response of image-guided radiation therapy for oral cancer. Technology in Cancer Research & Treatment. 2023;22. 10.1177/15330338231189.
Li X, Wang X, Zhao C, Shao L, Lu J, Tong Y, et al. From one to all: self-assembled theranostic nanoparticles for tumor-targeted imaging and programmed photoactive therapy. Journal of Nanobiotechnology. 2019;17(23):17–17. 10.1186/s12951-019- 0450-x.
Singh D, Dilnawaz F, Sahoo SK. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine. 2020;15(2):111–114. 10.2217/nnm-2019-0401.
Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Review of Molecular Diagnostics. 2013;13(3):257–269. 10.1586/erm.13.15.
Esmaeilpour D, Broscheit JA, Shityakov S. Cyclodextrin-based polymeric material bound to corona protein for theranostic applications. International Journal of Molecular Sciences. 2022;23(21):13505–13505. 10.3390/ijms232113505.
Feng G, Liu B. Aggregation-Induced Emission (AIE) Dots: Emerging Theragnostic Nanolights. Accounts of Chemical Research. 2018;51(6):1404–1414. 10.1021/acs.accounts.8b00060.
Kang M, Zhang Z, Song N, Li M, Sun P, Chen X, et al. Aggregation-enhanced theranostics: AIE sparkles in the biomedical field. Aggregate. 2020;1(1):80–106. 10.1002/agt2.7.
Vats S, Singh M, Siraj S, Singh H, Tandon S. Role of nanotechnology in theranostics and personalized medicines. Journal of Health Research and Reviews. 2017;4(1):1–7. 10.4103/2394-2010.199328.
Li L, Lu Y, Jiang C, Zhu Y, Yang X, Hu X, et al. Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded x-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Advanced Functional Materials. 2018;28(5):28–28. 10.1002/adfm.201704623.
Wang Y, Sun S, Zhang Z, Shi D. Nanomaterials for Cancer Precision Medicine. Advanced Materials. 2018;30(17):1705660–1705660. 10.1002/adma.201705660.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Humphrey Samuel, Gideon Okibe, Manasseh Ilumunter, Undie David, Esther Omeche, Fatima Mahmud

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain all proprietary rights, including copyright, such as patent and trademark rights and rights to any process or procedure described in the article.

